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The flow of a rotating fluid over isolated three-dimensional topographic features has 
been investigated. Laboratory experiments have been conducted with a rotating 
water channel to det'ermine the characteristics of the flow over and around truncated 
cylindrical disks and depressions located on the upper and lower bounding surfaces 
of the channel. The geometry of the rotating channel allowed the beta effect to be 
modelled and cases of beta-plane westward, beta-plane eastward and f-plane flows 
were studied. Flow patterns revealed by the use of an electrolytic precipitation 
technique are presented, and the flow behaviour is quantified in terms of a 
characteristic speed of the flow through a circular cylinder circumscribing the 
topography in the vicinity of the channel midplane. Case studies are presented for 
a range of values of Rossby number, Ekman number, beta parameter, and cylinder 
height-to-radius ratio. The vorticity equation and associated boundary conditions are 
discussed for the cases studied in the laboratory and appropriate numerical solutions 
are obtained. The laboratory and numerical experiments demonstrate the character 
of the horizontal steering of fluid by the topographic features as a function of the 
system parameters. Comparisons between laboratory and numerical experiments are 
presented and shown to be in good agreement. 

1. Introduction 
In  a recent laboratory study two of us (Boyer & Davies 1982) conducted an 

extensive series of experiments on the flow past a right circular cylinder on a 
beta-plane; see figure 1 with the obstacle being a 'full cylinder' extending from the 
lower to the upper surface. This paper will be referred to as BD (1982) in the following. 
The investigation utilized a horizontal-axis flow channel mounted on a vertical-axis 
turntable capable of rotating either clockwise or anticlockwise. The upper and lower 
surfaces of the channel were sloped to simulate the beta-effect with the narrow portion 
of the channel being toward the north (see figure 1). Eastward and westward 
beta-plane, as well as f-plane (zero channel slope), flows could thus be investigated. 
The working fluid was water and the resulting characteristic motions were observed 
utilizing an electrolytic-precipitation flow-visualization technique. 

The study demonstrated a number of interesting flow phenomena unique to 
rotating systems and not heretofore discussed in the literature. For example, i t  was 
shown that, for eastward flow on a beta-plane, a region in the near wake of the cylinder 
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FIGURE 1 .  Physical system. 

existed in which the characteristic speed exceeded that of the freestream. It was also 
demonstrated that the beta-effect tends to suppress flow separation for eastward flows 
while enhancing i t  for westward flows, other parameters being fixed. The investigation 
was quantitative in the sense that the extent of the separated bubble region 
downstream of the cylinder was measured as a function of the various system 
parameters. 

The purpose of the present study is to extend the full-cylinder investigation to the 
flow over isolated steep-sided topographic features of circular form. I n  the laboratory 
these take the form of raised disks and cylindrical depressions with vertical sidewalls 
(see figure l ) ,  while in the numerical experiments these features have steep but finite 
sidewall slopes. 

By dimensional analysis i t  is easily shown that the physical system depicted in 
figure 1 is characterized by the following parameters: 

( a )  Ro = U/BwR,  the Rossby number; 
( b )  E = v/2uR2,  the Ekman number; 
( c )  /3 = a ( R / H ) / R o ,  a beta-parameter; 
( d )  R / H ,  the ratio of topography radius to mean channel depth; 
( e )  Bh / f i ,  twice the ratio of topography height to mean channel depth; 
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( f )  LIR, the ratio of channel width to topography radius; 
( 9 )  eastward or westward, the flow direction for beta-plane motions. 

I n  addition, when the slope of the sidewalls of the topographic feature is finite (in 
the numerical experiments) it must also be included as a parameter. In  the above 
U is the freestream speed, w the rotation rate, R the topography radius, v the 
kinematic viscosity, a the cross-channel slope, H the channel height, h the height of 
the topographic feature, W, the width of the sloping region (for the numerical 
experiments), and L the channel width. 

In  92 the results of the laboratory programme are presented. The principal aim 
of this section is to discuss qualitatively the character of the disk and cylindrical- 
depression flows for the range of dimensionless parameters considered. A further aim 
is to estimate a characteristic horizontal speed in the circumscribing cylinder as a 
function of the various system parameters; i.e. a ‘Taylor-column speed’. In  93 the 
quasigeostrophic equations for viscous flow over topography are given, and in 94 
numerical techniques for their solution discussed. Section 5 includes the results of 
various numerical calculations and their comparison to laboratory flows. 

2. Laboratory experiments 
The experimental apparatus utilized and the technques employed were the same 

as in the full cylinder study reported in BD (1982). The interested reader is referred 
to that paper for details. 

A principal difficulty in designing a laboratory programme for physical systems 
such as those being considered here is the large number of parameters required to 
characterize the flow ; the present system involves seven dimensionless parameters. 
It was thus necessary to focus the experiments on variations in a limited number of 
the system parameters. I n  this regard the experimental design was as follows: 

R = 2.54 cm, L = 35.6 cm, H = 3.49 cm - all runs; 
h = 0.44, 0.87, 1.31 cm - disk; 
h = 0.44, 0.87, 1.31, 2.62 em - cylindrical depression; 
w = 0.5, 1.0, 2.0 rad/s; 
U = 0.25, 0.50, 1.00 cm/s; 
CL = 0.00, 0.0536. 
This experimental design allowed for the following systematic comparisons of flow 

( a )  disk versus cylindrical depression ; 
( b )  effect of variation of topographic aspect ratio, other parameters being fixed; 
(c) effect of flow direction (i.e. eastward or westward) for beta-plane flows; 
( d )  effect of variation of the Rossby number-note that since only one sloped 

channel was considered for beta-plane flows and that the beta parameter includes the 
Rossby number, variations in Ro were tied to  variations in /3, so that effects of /3 and 
Ro could not be separated ; 

behaviour : 

( e )  effect of variation in the Ekman number, other parameters being fixed. 
The discussion of the experimental results will be given in two parts. First the 

qualitative nature of the resulting flows will be considered. Then some measures for 
quantifying certain flow characteristics will be advanced and the results discussed. 

Figures 2 and 3 depict a series of horizontal streamline patterns in the midplane 
( z  = 0) of the flow channel for a disk and cylindrical depression respectively. Figures 
2 ( a )  and 3 ( a )  are forf-plane flow (i.e. /3 = O ) ,  and the flow is from left to right with 
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FIGURE 2. Midchannel streaklines; disk; Ro = 9.8 x 1W2, 6 = 15.4 x (Re = 64), 2 h l H  = 0.25, 
R / H  = 0.73: (a)f-plane (i.e. /3 = 0);  (b )  beta-plane eastward (p = 0.40); ( c )  beta-plane westward 
(/3 = 0.40). 

the rotation being anticlockwise. Figures 2 ( b )  and 3 ( b )  depict eastward flow with the 
flow being from left to right (i.e. west to east) with north being toward the top and 
with the rotation being anticlockwise. Figures 2 ( c )  and 3(c )  represent westward flow 
with the motion being right to left (i.e. cast to west) and with north being toward 
the top and again the rotation anticlockwise. 

I n  comparing the disk with the depression flows it is clear that  the motion above 
the topographic feature is predominantly anticyclonic (relative vorticity of opposite 
sign to the basic rotation) for the disk and cyclonic (relative vorticity of the same 
sign as the basic rotation) for the depression. This is a common feature of all 
experiments conducted. 

A second feature of note is that  for eastward flows (see figures 2 b ,  3 h )  there is a 
tendency for the lateral separation of streamlines to  be reduced downstream of the 
topographic feature (either disk or depression). This jetting effect in the wakt of the 
feature is reminiscent of the jetting found in the wake of solid cylinders in eastward 
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FIGURE 3. Midchannel streaklines; cylindrical depression; Ro = 9.8 x 1W2, E = 13.8 x 
(Re = 71),  2h/H = 0.75. R / H  = 0.73: (a) f -p lane  (a = 0); (b )  beta-plane eastward (p = 0.40); ( c )  
beta-plane westward (p = 0.40). 

flow as discussed in BD (1982). One notes also that for eastward flows the streamlines 
in the wake exhibit a damped Rossby-wave pattern similar to that noted in BD (1982) 
for a solid cylinder. A major difference here, however, is that these patterns are not 
symmetric about the freestream axis x as they were for ‘almost fully attached flows’ 
in the wake of solid cylinders (see BD 1982). 

Beta-plane westward (figures 2c, 3c) andf-plane flows (figures 2a, 3a )  do not 
exhibit jetting in the wake ; this observation again is in consonance with that found 
for a solid cylinder in BD (1982). 

Figures 4 and 5 depict midchannel streamlines for a disk and depression respectively, 
and demonstrate the importance of the topographic feature aspect ratio. Figure 4 
is an eastward flou case with the motion from left to right and the rotation being 
anticlockwise. It is noted that the disks extcnd through 0.25,  0.50 and 0.75 of the 
channel depth in moving from figures 4(a-c) respectively. Note that jetting in the 
wake can be observed for all cases and that the amount of flou passing over the disk 
decreases dramatically as the disk hcight increases (as one would expect from the 
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FIGURE 4. Midchannel streaklines; disk; Ro = 9.8 x lo-', E = 15.2 x l O F  (He = 64), beta-plane 
eastward (/3 = 0.40), R I H  = 0 . 7 3 :  ( a )  2hlH = 0.25; ( h )  2 h l H  = 0.50; (c)  2 h l H  = 0.75. 
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FIGURE 5.  Midchannel streaklines; cylindrical depression; Ro = 4.9 x lo-', E = 7.2 x 
(Re = 68), f-plane (/3 = O.OO),  R I H  = 0.73: ( a )  2hlH = 0.25; ( b )  2hlH = 0.75; (c) 2h/H = 1.50. 
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Taylor-Proudman theorem). The hazy tracer patterns to the right of the midplane 
streamlines above the disk in figure 4 ( b )  are due to portions of the relatively dense 
tracer ‘dropping’ into Ekman boundary layers on the disk surface. 

Figure 5 also shows the important effects of the depression aspect ratio, other 
system parameters being held fixed. These photographs are for an f-plane case with 
the flow being from left to right and the rotation anticlockwise. Note that the total 
depression depth (top and bottom) is 1.5 times the channel depth in figure 5 ( c ) .  The 
amount of fluid passing over the depression decreases dramatically as the depression 
depth increases. It is noted that the 7.5 x 7.5 ern square enclosing the boundary of 
the circular depression in figures 5 (b ,  c )  (clearly visible in c )  is the outline of Plexiglas 
extensions added above and below the flow channel to accommodate the large 
depressions for these two cases. The depression in figure 5 ( a )  was made simply by 
drilling a 2.54 cm radius hole in the bounding walls of the channel. 

Figure 6 depicts a series of runs for westward flow over a disk for increasing Rossby 
number (and decreasing p), other parameters being fixed. The flow is from right to 
left and the rotation is anticlockwise. It is noted that, as the Rossby number increases 
(and p decreases), the rate of flow through the imaginary cylinder circumscribing the 
disk increases. This is as expected sinces the constraints of the Taylor-Proudman 
theorem should become increasingly valid for smaller and smaller Rossby numbers. 

It is also noted that with increasing Rossby number (and decreasing p) the flow 
in the vicinity of the disk has an increasing tendency to become unsteady. In  
figure 6 ( b ) ,  for example, the streaklines passing through the circumscribing cylinder 
and those adjacent to this cylinder indicate that a slight unsteadiness in the flow 
has developed; this flow in which the unsteadiness is restricted to a small region in the 
vicinity of the circumscribing cylinder and for which the amplitude of the wavelike 
patterns of the streaklines are much smaller than the obstacle diameter is termed 
‘slightly unsteady’. Flows in which the amplitude of the wave patterns are 
comparable to the obstacle diameter, such as that in figure S ( c ) ,  are termed ‘fully 
unsteady’; in such flows the region of unsteadiness of the flow field extends well 
beyond (i.e. of the order of one or two diameters) the boundary of the circumscribing 
cylinder. It must be emphasized that the tracer lines in all of these photographs are 
streaklines and thus correspond to streamlines only for steady flow. When the flow 
is unsteady, as in figures 6(b ,  c ) ,  these lines are no longer streamlines. Thus, for 
example, the large wavelike patterns in the lower left-hand portion of figure 6 (c) do 
not depict streamlines or particle pathlines. In  fact, in the experiments considered, 
Ekman suction and pumping quickly dissipate unsteady motions in the vicinity of 
the circumscribing cylinder and within a few diameters downstream of the topography 
the motion is observed to be steady; i.e. the wavelike patterns are observed to be 
advected downstream with little change in shape. 

The unsteady nature of the flow in the vicinity of the cylinder in figures 6 ( b ,  c )  
is similar. The unsteadiness is restricted to a region of less than a quarter of a diameter 
beyond the circumscribing cylinder in figure 6 ( b )  and less than approximately one 
diameter in figure 6(c) .  In  summary, for certain parameter ranges the flow in the 
immediate neighbourhood of the obstacle can become unsteady (probably through 
the development of a shear-layer instability as in the case of the solid cylinder in BD 
(1982) and when local unsteadiness occurs the streaklines shown on the laboratory 
figures can no longer be considered streamlines. 

Figures 7 ( a ,  b)  are Rossby number versus Ekman number flow-regime maps for 
the disk for the f-plane and beta-plane experiments respectively. The experimental 
photographs were characterized simply as steady (symbol only), slightly unsteady 



Rotating $ow past disks and cylindrical depressions 75 

FIGURE 6. Midchannel streaklines; disk; E = 7.4 x beta-plane westward, 2h/H = 0.50, 
R/H = 0.73: ( a )  Ro = 4.9 x lop2 ( R P  = 66), p = 0.80; ( b )  Ro = 9.8 x (Re = 133), /3 = 0.40; (c) 
Ro = 19.7 x (Re = 266), /3 = 0.20. 
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FIGURE 7 .  Rossby number versus Ekman number flow-regime maps for disk. Tilde ( - )  above 
symbol represents unsteady flow while overbar represents slightly unsteady flow (see text). 
Parameter values R / H  = 0.73, 2h/H = 0.25 (o), 0.50 (0) and 0.75 (A). ( a )  f-plane (1 = 0) ;  
(0) beta-plane with open symbols being westward and closed symbols eastward. The dashed lines 
represent the approximate divisions between steady and slightly unsteady and slightly unsteady 
and steady flows respectively. 

(overbar) or fully unsteady (tilde above symbol). Within the limitations of the 
experiment and for the range of parameters investigated i t  can be concluded that 
the unsteady nature of the flow depends primarily on the values of the Rossby and 
Ekman numbers and is essentially independent of the ratio 2hlH of disk height to 
channel depth, beta-parameter and flow direction. 

Furthermore, similar plots for the cylindrical depression for the f-plane and 
beta-plane are virtually identical with figures 7 ( a ,  b )  respectively, and for the sake 
of brevity are not included here. That is, the steady, slightly unsteady and fully 
unsteady flows occur in approximately the same regions of Rossby number versus 
Elman number space as for the disk; this also includes the experiments for the 
depression for values of 2hlH given by 1.50. 

In  order to quantify the experimental results, a ‘Taylor-column speed ’ Us is defined 
as the average speed of the fluid in the midchannel plane through the circle defined 
by the circumscribing cylinder and normalized on the freestream flow. Since the tracer 
spacing upstream of the topographic features was set a t  eight spaces for the disk 
diameter 2K = 5.08 cm, one need merely count the number of spaces between 
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streamlines crossing the circumscribing circle and divide by eight to obtain an 
estimate of the Taylor-column speed. While on many of the photographs it is possible 
to estimate a fraction of a spacing, the crowding of the streamlines along the 
circumscribing circle suggests the maximum error in this measurement to be 
approximately one spacing, or 12.5 y', for the Taylor-column speed. This observable, 
of course, has its shortcomings in that it does not address the question of flow 
direction or variation in speed across the circumscribing cylinder. Nevertheless, it  is 
a relatively easily measured observable, it  allows some comparison across cxperiments, 
and it serves as a satisfactory indicator of the flow behaviour. 

Figures 8(a-b) depict the Taylor-column speed, U ,  as a function of the ratio 2hlH 
of disk height to channel depth for increasing Rossby numbers and for approximately 
fixed Ekman numbers (the plus and minus range for the Ekman number is principally 
due to variations in the fluid viscosity caused by temperature variations). As in the 
previous notation, the overbar represents a slightly unsteady flow while the tilde 
denotes a fully unsteady motion. 

As discussed earlier, the figures clearly show the strong dependence of Us on 2 h l H .  
Furthermore, one can note from figure 8 that there is a tendency for U ,  to increase 
as a result of increasing Ro (and decreasing p), other parameters being fixed. Within 
the accuracy of the measurement of Us i t  is not possible to determine the importance 
of flow direction or /3 on the magnitude of Us. That is, f-plane and beta-plane eastward 
and westward flows give approximately the same Us,  other parameters being equal. 
This is not the case for the cylindrical depression, as will be discussed below. 

Figures 9(a-c) are another series of plots of [J, versus 2hlH for the disk, but a t  
a larger Ekman number than for figure 8. Comparisons of figures 8 ( b )  and 9 ( a )  and 
figures 8 ( c )  and 9 ( b )  respectively reveal a tendency for larger [Js to owur for larger 
E, other parameters being fixcd. 

Figures 10 and 11 are experimental runs for the cylindrical depression corresponding 
respectively to the parameters in figures 8 and 9 for the disk. From all of these figures 
one can again note the important dependence of Us on the parameter 2 h l H ;  i.e. deeper 
depressions give smaller Us. For the ease of the disk, of course, Us by definition is 
zero for 2hlH = 1 (the cylinders fill the whole channel). This is not true for the 
depression, but one can note the continual decrease in Us as 2 h l H  becomes larger. 

The most apparent difference between figures 8 and 9 and figures 10 and 11 
respectively is that  for the disk i t  was not possible to determine an effect of flow 
direction on Us,  but for the depression it is clear that C', is greater for westward flow 
than for f-plane or eastward flow, other parameters being fixed. As depicted on figures 
10 and 1 1 ,  within the limitations of the observations, i t  is not possible to distinguish 
between f-plane and eastward flow in the behaviour of Us. As noted, however, the 
westward and f-plane and eastward flows differ substantially as regards Us cspecially 
for the lower-Rossby-number flows. 

As might be expected by comparing figures 8 ( a )  and lO(a) ,  figures 8 ( b )  and 1 0 ( b ) ,  
and so on, one can conclude that disks give stronger Taylor columns (i.e. smaller U s )  
than cylindrical depressions for all values of 2 h / H ,  other parameters being fixed. 
Finally, in the case of the cylindrical depression the tendency for decreasing Ro 
(increasing p) or deereasing E to result in decreasing TJ,, other parameters being fixed, 
can also be noted by considering figures 10 and 1 1 .  
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3. The quasigeostrophic potential-vorticity equation with friction and 
topography 

The quasigeostrophic vortieity equation, including Ekman as well as lateral 
friction in a region of variable depth, is well known to  meteorologists and ocean- 
ographers (Pedlosky 1979, particularly chap. 4). I n  this case, the local vorticity 
balance depends upon several competing tendencies : the advection of vorticity, 
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vortex-tube stretching (due both to variable depth and to Ekman-layer pumping on 
the upper and lower boundary surfaces) and frictional decay. Thus, following 
Pedlosky, the lowest-order z-component of the vorticity equation, in dimensional 
form, can be written as 

aw 
Dt a Z  
E!! = 2w -2 i- vvy,, 
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where 5, is the vorticity of the geostrophic flow and w1 is the vertical velocity in the 
interior. For our channel geometry (essentially figure 1 but with the sidewalls of the 
obstacle not vertical) 

where U0 = (uo, no) is the horizontal velocity and 

26(x, y )  2y tan a 
r = H - - -  H (3.3) 

is the relative thickness of the fluid layer. Here 6(x, y )  describes the shape of the 
isolated obstacle and y tan 01 simulates the beta-effect. The factor 2 arises because both 
top and bottom boundaries have the same depth variations as in figure 1 .  Introducing 
the stream function, we can then write the quasigeostrophic potential vorticity 
equation as 

Here 
4w 4wtana 
H H Y  Q = V2@--6+ 

(3.4) 

(3.5) 

is the potential vorticity, a quantity that would be conserved along streamlines in 
the absence of the frictional terms on the right-hand side of (3.4). 

Equation (3.4) will be used to simulate the laboratory flows discussed above. The 
circular disk or depression used there will be approximated (see $2) by a circular 
topographic feature of the form 

where r2 = x2+ y 2 ;  here h and R denote the height and radius respectively of the 
topographic feature, and Wo is the characteristic width of the sidewalls. Note that 
6 goes from zero to h as it crosses the sidewalls. Figure 12 shows the shape of this 
topography in vertical section and planform. In  all the experiments to  be performed, 
Wo is small compared with R; that is, we are dealing with a steep sidewall slope. 

4. Numerical techniques 
The numerical calculations are carried out by integrating (3.4) forward in time from 

a state of uniform undisturbed flow (either eastward or westward). Standard 
second-order-accurate finite-difference equations are used for the horizontal spatial 
derivatives with the Arakawa (1966) form for the advective (Jacobian) terms. This 
finite-differencing is used extensively in ocean and atmospheric models to conserve 
numerically the important flow properties (Holland 1978). 

The equations are integrated in time using centred time differencing except for an 
occasional forward time step to  eliminate time splitting of the solutions. The frictional 
terms are lagged one time step for stability reasons. The method of solution is to 
predict V2@ at  a new time level using (3.4), to solve V2$ = F in a channel geometry 
with $(y) specified at  inflow (uniform U = -phU), $z = 0 specified a t  the outflow, 
$ = gUL on y = -$L3 and @ = -4UL on y = +$L, and making use of a fast-Fourier- 
transform technique for the solution of the Poisson equation. 
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FIGURE 13. Numerical experiments for a disk simulating the respective laboratory experiments 
in figure 2. Dimensional parameters all figures: R = 2.54 cm, H = 3.49 cm, L = 21.2 cm, 
h = 0.44 cm, w = 0.5 rad/s, U = 0.25 cm/s. Dimensionless parameters, all figures: Ro = 9.8 x 10P, 
E = 15.4 x (Re = 64), 2hlH = 0.25, R/H = 0.73. (u, b) f-plane, a = 0, /3 = 0 ;  (c, d )  beta-plane 
eastward, a = 0.0536, /3 = 0.40; ( e ,  f )  beta-plane westward, a = 0.0536, ,f? = 0.40. (u, c, e )  are 
streamlines +, and ( b ,  d,  f )  are constant-vorticity Vz$ contours. The respective contour intervals 
are ( a )  0.3 om2 s-’, (b) 0.02 0, (c) 0.3 cm2 s-l, (d) 0.02 0, (e) 0.3 om2 s-’, (f) 0.01 0. Dashed 
isolines indicate negative values for both fields. The H and L and their associated numbers designate 
local maxima and minima respectively. 

I n  addition to specifying $ on inflow and $, = 0 on outflow, further boundary 
conditions on vorticity are needed because of the lateral friction terms. The outflow 
boundary gives little difficulty; the auxiliary boundary condition V2$, = 0 leads to 
smooth outflow behaviour. Eastward /3-plane flow cases, however, are sensitive to 
the auxiliary inJlow condition, apparently due to westward-propagating Rossby 
waves reaching the upstream end during the spinup to a steady state. Several 
upsteam boundary conditions have been tried, including (i) specifying Vz$ = 0 and 
(ii) specifying V = 4, = 0 on inflow. The former choice leads, for our standard 
domain size, to a permanent disturbance (a non-zero V-component a t  the inflow 
boundary). Alternatively, when 9, is set to zero, no disturbance remains in the final 
steady state. I n  fact, Vz$ is nearly zero a t  the inflow, suggesting that this boundary 
condition more effectively lets the westward-propagating waves exit from the 
domain. All cases shown below used this condition. It should be mentioned, however, 
that  the nature of the flow near the disk was little affected by any of these ‘distant ’ 
boundary conditions, as long as the inflow boundary was several radii away from the 
obstacle. 

A few experiments with different domain sizes were carried out to ascertain how 
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the flow depended upon this factor. I n  addition, numerical experiments with varying 
grid resolution were carried out to  assess the importance of numerical errors due to 
the finite-difference approximations involved. These auxiliary experiments will be 
discussed after presenting basic simulations of the laboratory experiments. For these 
the disk or depression has a diameter of 2.54 ern located a t  the centre of a channel 
42.4 ern long and 21.2 em wide. The grid size is 0.212 cm so that numerical solutions 
are obtained on a 200 x 100 grid of points. As we shall show later, this is adequate 
to describe in detail the flow over and in the vicinity of the obstacle. 

5. Numerical experiments 
The initial numerical experiments were carried out to simulate the laboratory flow 

fields shown in figure 2. Results are shown in figure 13. Note firstly that the deflections 
of the streamlines are rather well reproduced, showing the correct tendencies for (i) 
southward deflections (figure 13a, c ) ,  (ii) Rossby-lee-wave structure for eastward flow 
on the beta-plane (figute 13c) as well as the absence of any such structure for 
westward flow on the beta-plane (figure 13e), and (iii) the magnitude of the flow 
velocity over the obstacle (all cases).t 

The disturbance patterns, as indicated by the simulated vorticity patterns, are 
shown in figures 13(b, d, f ) .  The influence of p is clearly shown: a stationary Rossby 
lee wave exists when the westward-propagating tendency is arrested by 'mean ' 
eastward flow (figure 13 d ) .  A rapidly decaying downstream oscillation occurs. Owing 
to the top and bottom Ekman layers, however, the vorticity in all cases is largest 
over the obstacle and immediately on its lee side, and decays rapidly away 
downstream. For these parameters, the obstacle disturbs the flow only within a few 
radii of the topographic feature. 

The streamline and vorticity patterns shown in figures 13 (a ,  b )  are easily explained 
by following a streamline across the topographic feature and examining the changing 
vorticity along its path. The case with 01 = 0 (i.e. no beta-effect) is particularly simple 
to interpret. Upstream, the vorticity to = V z ~  is virtually zero, but, as the flow crosses 
the leading edge of the topography, there is a rapid decrease in vorticity equivalent 
to 4whlH. The changing vorticity is predictable from (3.4) by assuming that the 
potential vorticity Q is approximately conserved crossing the topographic slope, since 
then IVf,I = 4 w A S / H  = 4wh/H. The minimum value of f,, is correctly predicted to 
about using this total stretching input of negative vorticity. This vorticity 
manifests itself as a clockwise curvature of the flow over the flat top of the obstacle. 
For the parameters of this case, the Ekman-pumping terms lead to a decrease of 
(negative) vorticity quite rapidly along a streamline from this nearly impulsive 
topographic input. I n  the flat region on top of the disk 

i.e. the vorticity decays by Ekman suction. This gives an estimate for the frictional 
e-folding scale 

U 
L, z (5.2) 2(wv/H2$ ' 

which is about 6.2 cm for the parameters given in figure 13 (a ,  b ) .  Thus the vorticity 
will have decreased by a factor of about epl before the streamline reaches the other 

f Note tha t  the spacing of the streaklines in the laboratory is non-uniform (i.e. the  outer spacing 
is twice the Inner), while that  in the numerical simulations is uniform. 
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edge of the disk (note that the diameter of the disk is 5.08 em). When the streamline 
('rosses into deeper water again there is another impulsive change in vorticity (this 
t,ime positive), which leads to counterclockwise curving streamlines. These merge 
smoothly back onto the uniform flow far from the obstacle. 

The role of the beta-effect in these experiments (laboratory and numerical) can be 
appreciated by examining the size of the terms in the linearized vorticity balance : 

4w tan a 
'$X%X+ H 

Letting @ - emx, then 
4w tan a 

= 0  

(5 .3)  

(5.4) 

gives the characteristic equation governing the nature of the downstream decay for 
this simplified problem. When tancc = 0 there is a single decay scale given by (5.2) 
above. When tan a + 0 and l J  > 0, and when, as in all of the laboratory experiments, 
t a n a  > v/4HIi the mi are complex with a single exponential downstream decay scale 
twice that above (12.4 cm) and an oscillation wavelength given by 

For the laboratory experiments shown in figures 2 ( b ) ,  3 ( b ) ,  4(a-c) and for the 
numerical experiments given in figures (13 ( c ) ,  14(a, c ,  e ) ,  Lo has the value of 18.4 cm. 
Finally, when tan a += 0 and TI < 0 the mi are again real with two distinct decay scales, 
one upstream and one downstream (differing signs) : 

For the laboratory experiment shown in figure 2(c)  and the numerical experiment 
given in figure 1 3 ( f ) ,  one determines L,, = 3.6 cm and La, = 2.3 cm. These scales 
agree reasonably well with estimates made from the vorticity pictures in figure 13 (f). 
Qualitatively, the beta-eastward experiment differs from the /I = 0 experiment by 
reaching further downstream and by showing an oscillation in the wake of the 
obstacle. The beta-westward case differs from the others by having two decaying 
roots, one upstream and one downstream, and we see in figure 1 3 ( f )  that there is 
indeed a disturbance upstream of the obstacle (as well as downstream) which is not 
the case for the othcr two numerical experiments. 

In  order to test other parts of the parameter range, numerical analogues of the 
laboratory experiments shown in figures 3-6 were also run. Here only the cases 
equivalent to those in figures 4 and 6 are shown; these are given in figures 14 and 
15 respectively. The behaviour of the flow for the sequence of taller and taller 
obstacles shown for the laboratory cases (figures 4a-c) is similar to the numerical 
simulations (figures 14a, c, e ) .  When the height of the topographic feature is doubled 
(comparison of figures 14a and c ) ,  the amount of flow going over the obstacle is greatly 
reduced, and when the height h is tripled (comparison of figures 14a and e ) ,  almost 
all of the flow diverts around the obstacle. At this extreme a Taylor-column situation 
has approximately heen reached, and the fluid over the obstacle is nearly isolated. 
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( d )  

FIGURE 14 (a-d). For caption see facing page. 
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(f) 

:a1 exDeriments for a disk in eastward flow simulating the resuective laboratorv " 
experiments in figure 4. Dimensional parameters, all figures: R = 2.54 cm, H = 3.49 cm, 
L = 21.2 em, w = 0.5 rad/s, 0 = 0.25 cm/s, and a = 0.0536. Dimensionless parameters, all figures: 
R o  = 9.8 x E = 15.4 x lo-* ( R e  = 64), /3 = 0.40, R / H  = 0.73. ( a ,  b )  h = 0.44 cm, 2hlH = 0.25; 
(c, d )  h = 0.88 em, 2h/H = 0.50; ( e , f )  h = 1.32 cm, 2h/H = 0.75. The respective contour intervals 
are (a) 0.3 om2 s-l, (b) 0.02 s-l, (c) 0.3 cm2 s-l, (d )  0.05 s-', ( e )  0.3 cm2 s-l, (f) 0.06 s-l. 

These numerical results are in good agreement with the laboratory observations of 
figures 4 (a-c) . 

In  the sequence shown in figures 15(a,  c,  e )  (comparable with laboratory flows in 
figures 6 u-c) a difference between the numerical simulations and the laboratory 
analogues is observed. The principal difference is the absence of transient behaviour 
in the numerical calculations. For the Reynolds numbers under consideration 
(Re = 270 in figure 15e)  it  would not be surprising for instabilities to begin to manifest 
themselves. This is not observed in the numerical experiments, perhaps owing to the 
idealized nature of the numerical model (i.e. exact steadiness in the upstream flow 
and complete two-dimensionality). These conditions may not be entirely met in the 
laboratory situation. 

As a test, the sequence shown in figures 15 (a-c) was extended to  very strong flows 
(Re = 1064), as shown in figure 16, and there was still no apparent transient behav- 
iour observed. This case was of some interest, however, in that for the first time (not 
so for other experiments discussed here), the flow was so strong that friction did 
not play a very important role. There was a strong tendency along all streamlines 
for the potential vorticity to be conserved. Ic the vorticity balance the change 
in relative vorticity following a streamline almost exactly compensates for the 
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FIQURE 15. Numerical experiments for a disk in westward flow simulating the respective laboratory 
experiments in figure 6. Dimensional parameters, all figures: R = 2.54 cm, H = 3.49 cm, 
L = 21.2 cm, h = 0.88 cm, w = 1.0 rad/s, a = 0.0536. Dimensionless parameters, all figures: 
E = 7.4 x 2hlH = 0.50, R / H  = 0.73. (a, 6 )  U = 0.25 cm/s, Ro = 4.9 x (Re = 66), 
p = 0.80; (c ,  d) U = 0.50 cm/s, Ro = 9.8 x LO-' (Re = 133), p = 0.40; fe,f)  u = 1.00 cm/s, 
Ro = 19.6 x (Re = 266), ,8 = 0.20. The respective contour intervals are (a) 0.3 cmz sP, (b) 
0.07 s-l, (c) 0.6 om2 s-l, ( d )  0.08 s-l, ( e )  2.0 cm2 s-', (f) 0.07 s-'. 

topographic stretching term as the streamline crosses the topographic feature. If one 
assumes that 

DQ - = 0, 
Dt 

then i t  can be shown that, in the steady state, the potential vorticity is a function 
of @ alone; i.e. 

or 
Q = F(k) (5.9) 

4w 4w tan a 
H Y = F W ) .  (5.10) 

H 
V2$ -- 6(x,  y )  + 

Far upstream, the first two terms are negligible, so the function F is fixed by the 
upstream conditions, i.e. 

(5.11) 

4 F L M  141 
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FTGTJRE 16. Numerical experiment for a disk in westward flow extending those runs in figure 15 
to a higher Rossby number. Dimensionless parameters: E = 7 .4  x lo-¶, 2hlH = 0.50, R I H  = 0.73, 
Ro = 0.78 (Re = 1054), /3 = 0.05. (a )  Stream function (contour interval 10.0 om2 s-l); ( b )  varticity 
(contour interval 0.06 s-l). 

Accordingly, the flow near to the obstacle must obey the equation 

(5.12) 

For westward flow (U  < 0) this is simply a Helmholtz equation, which can be easily 
solved by fast-Fourier-transform techniques. This gives us another limiting case, one 
in which the flow is frictionless but one in which the role of the obstacle in disturbing 
the flow can be readily investigated. (Note, however, that  eastward flow (i.e. 0 > 0) 
leads to a wavelike equation and the disturbance associated with solutions to this 
equation will be felt far from the obstacle.) Neither laboratory nor numerical 
experiments were conducted on this problem. 

In  addition to trying a variety of inflow and outflow boundary conditions, two other 
kinds of supplementary numerical experiments were carried out. The first was to vary 
the domain size, that  is the width and length of the channel, while keeping the grid 
size and obstacle the same. Figure 17 shows the result of carrying out calculations 
for the same obstacle and other physical parameters as that in figures 14(a, 6 )  but 
in a domain extended to 6 3 . 6 ~ 4 2 . 4  cm (i.c. 300x200 grid points). The stream 
function and vorticity show nearly identical behaviour near the disk (note that the 
contour interval in figure 17 ( a )  is a factor of two greater than in figure 14 ( a ) ) .  The 
far field is, however, somewhat altered, as the topographic Rossby wave is less 
constrained in the larger basin. These far-field effects have little influence on the flow 
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FIGURE 17. A numerical experiment for the same physical problem as in figures 14(a, b) but in a 
domain 1.5 times as long and 2 times as wide (i.e. 63.6 x 42.4 cm); R = 2.54 cm, H = 3.49 cm, 
L = 42.4 cm, w = 0.5 rad/s, U = 0.25 cm/s, a = 0.0536, h = 0.44 cm. (u )  Stream function (contour 
interval 0.6 cm2/s); (b) vorticity (contour interval 0.02 s-l). 

near the obstacle, so the smaller, more-cost-effective basin was chosen for most of 
the numerical experiments. If one wanted to study the far-field behaviour, however, 
the larger domain (and ones even larger yet) would have to be used. It should be noted 
that Stevenson & Janowitz (1977) considered the far field in eastward beta-plane flow 
past shallow topography for the case when Ekman suction is present. Their general 
far-field results were qualitatively similar to those obtained in the present numerical 
studies. 

A discussion of numerical simulations such as these requires some remarks about 
resolution and accuracy. In  the experiments discussed above, a grid interval of 
0.212 cm was used throughout. Figure 18 shows two experiments, duplicating the 
figure 14(a, b )  results. but with double (Ax = 0.106 cm) and half (Ax = 0.424 cm) the 
resolution (other factors being kept constant) to assess the accuracy of the solutions. 
It was found that the coarsest resolution (figures 18c, d )  showed differences from the 
finest resolution (figures 18a, b )  in the vorticity maxima and minima of 12 yo or less, 
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FIGURE 18. Two numerical experiments for the same physical problem as in figures 14(a, b )  but 
with twice the resolution ( a ,  b )  and with half the resolution ( c ,  d) .  (u, c )  Stream functions; ( b ,  d )  
vorticity fields. The contour intervals are the same as in figures 14(a, b ) .  
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while the intermediate resolution (figures 14a, 6 )  differed from the fine-resolution case 
by about 4 yo in these measures. The streamline patterns are virtually identical, and 
none of these errors is large enough to change in any way the above discussion of 
results. 

Finally, although the computational cost in reproducing numerically the laboratory 
results shown in figures 8-11 would be exorbitant, a few comparisons of Us as 
determined in laboratory and numerical experiments is possible. The numerical 
experiments shown in figure 15 have common parameters with the plots in figure 9. 
The numerical experiments show Us increasing faster, as a function of Ro, than Us 
measured in the laboratory. This discrepancy is not resolved, but high-resolution 
calculations and calculations with a variety of sidewall widths W, show that it is not 
due to finite-difference numerical errors, to domain size, or to the finite width of the 
sidewalls of the disk in the numerical model (versus vertical sidewalls in the 
laboratory). The differences are most likely due to other physical differences in the 
two (numerical and laboratory) flows, i.e. the quasigeostrophic two-dimensional flow 
approximation of the model compared with the real, possibly three-dimensional, fluid 
flow in the laboratory. 

6.  Summary 
A series of laboratory experiments on the flow past disks and cylindrical depressions 

utilizing a rotating water channel has been conducted. Coupled with these laboratory 
studies, numerical integrations of the quasigeostrophic potential-vorticity equation 
for steep-sloped topographic features have been carried out in order to simulate the 
laboratory experiments. The laboratory and numerical experiments are found to be 
in good agreement. The numerical experiments have been performed using rather 
modest computing resources and were found to be helpful in elucidating the dynamics 
of the laboratory studies as well as providing a capability for extending the parameter 
range of the laboratory runs. 
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